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Abstract Cyclooxygenase (COX) enzymes catalyse the
biosynthesis of prostaglandins and thromboxane from
arachidonic acid (AA). We summarize in this paper, the
development of pharmacophores of a dataset of inhibitors
for COX-2 by using the Catalyst/Hypogen module using
six chemically diverse series of compounds. Training set
consisting of 24 compounds was carefully selected. The
activity spread of the training set molecules was from 0.1 to
10000 nM. The most predictive pharmacophore model
(hypothesis 1), consisting of four features, namely, one
hydrogen bond donor, one hydrogen bond acceptor, one
hydrophobic aliphatic and one ring aromatic feature, had a
correlation (r) of 0.954 and a root mean square deviation of
0.894. The entropy (configuration cost) value of the
hypotheses was 16.79, within the allowed range. The
difference between the null hypothesis and the fixed cost
and between the null hypothesis and the total cost of the
best hypothesis (hypothesis 1) was 88.37 and 78.51,
respectively. The model was validated on a test set
consisting of six different series of structurally diverse 22
compounds and performed well in classifying active and
inactive molecules correctly. This validation approach
provides confidence in the utility of the predictive pharma-
cophore model developed in this work as a 3D query tool in
the virtual screening of drug like molecules to retrieve new
chemical entities as potent COX-2 inhibitors. The model
can also be used to predict the biological activities of
compounds prior to their costly and time-consuming
synthesis.
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Introduction

Cyclooxygenase (COX) enzymes catalyse the biosynthesis
of prostaglandins and thromboxane from arachidonic acid
(AA). Cyclooxygenation of AA results in the formation of
prostaglandinG2 (PGG2) [1]. PGG2 is the precursor to
numerous prostaglandins including those that possess
analgesic, antipyretic and anti-inflammatory activity and
those that provide protection for the gastric mucosa [2].
Until recently, a single COX enzyme was thought to be
responsible for whole of the catalysis of AA to PGG2, it
was in 1990s that a second isoform of COX termed COX-2
was discovered [3]. This discovery made clear the existence
of COX as its two isoforms, i.e., COX-1 and COX-2 with
individual modes of expression. COX-1 being constitutive
in most cells perform housekeeping functions (gastrointes-
tinal tolerability, keeping vascular and renal homeostasis)
whereas COX-2 is inducible, induced in pathological
conditions by pro-inflammatory cytokines and playing a
major role in inflammation, pain and fever [4]. Therefore
adverse gastrointestinal (GI) effects of traditional non-
steroidal anti-inflammatory drugs (NSAIDS), e.g., aspirin,
ibuprofen and naproxen would be largely due to COX-1
inhibition [5] and hence clarifies our objective to develop
COX-2 selective inhibitors.

Selective COX-2 inhibitors are expected to play vital
roles in ovulation and labor, as well as in the treatment of
colon cancer and Alzheimer’s disease [6–8]. In addition,
there is a growing evidence that COX-2 contributes to
carcinogenesis [9]. A broad range of laboratory investiga-
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tions, animal models, and epidemiological studies provide
convincing evidence of that inhibition of the COX-2
pathway might have significant implication for the treat-
ment of colorectal cancer. As the inducible COX-2 isoform
is over expressed in colorectal tissues and is associated with
critical events of tumorigenesis [1]. COX-2 expression
correlates with expression of angiogenic factors and new
blood vessel formation. Inhibition of COX-2 favors
apoptosis causes a dose dependent decline of tumor growth
and metastasis in these models [1].

Currently, there is an ongoing research to design a new
COX-2 inhibitors structurally different from the current
ones. Indeed, recently Rofecoxib, from the diarylhetero-
cycle family, was withdrawn from the market because of
cardiotoxicity [10] which justifies that a constant effort is
devoted to identify new scaffolds for the COX-2 inhibition.
The present work applies pharmacophore development
method on six chemically diverse series of compounds to
give a hypothesis. Pharmacophore was first defined by
Paul Ehlirch in 1909 as “a molecular framework that carries
(phoros) the essential features responsible for a drug’s
(=pharmacon’s) biological activity” [11]. In 1977, this
definition was updated by Peter Gund to “a set of structural
features in a molecule that is recognized at a receptor site
and is responsible for that molecule’s biological activity”
[12]. The active molecule(s) are called active ingredients of
a drug. Alternatively pharmacophore is described as an
ensemble of interactive functional groups with a defined
geometry.

A pharmacophore can help medicinal chemists visualise
the potential interaction between ligands and receptor, it can
be used as a query in a 3D database search to identify new
structural classes of potential lead compounds and it can
serve as a template for generating alignments for 3D-QSAR
analysis. Thus the construction of an accurate pharmaco-
phore is a key objective in many drug discovery efforts.

A drug discovery cycle, to identify, to optimize and
eventually take a compound to the market is generally a
long process (approx 12–15 years) and is very expensive
(approx $500million R&D expense) [13]. The enormous
pressure that pharmaceutical and biotech companies are
facing, has created the need to apply all available
techniques to decrease attrition rates, costs and the time to
market [14]. Pharmacophore identification is now increas-
ingly being handled by automated computational methods,
e.g., Catalyst, GASP and DISCO are three commercially
available programs [15–17]. We have used Catalyst [18] in
this paper. The Catalyst software operates in 2 modes:
HipHop and HypoGen [18]. These have been successfully
used in drug discovery research [19–44] and toxicology.

Catalyst/HipHop generates pharmacophore hypothesis
using actives only. Catalyst/HypoGen takes activity data
into account and uses both active and inactive compounds

in an attempt to identify hypothesis that are common
among the active compounds but not among the inactives.
Kaminski et al. reported the development of pharmaco-
phore models from a series of farnesyl protein transferase
(FPT) inhibitors [23]. The best derived pharmacophore was
used to search a 3D database from Schering -Plough
Research Institute and successfully identified several low
micromolar FPT inhibitors with varied structures compared
to the structures used in the training set to develop the
pharmacophore.

Sprague [24] used this method in developing pharmaco-
phores for inhibitors against angiotensin converting
enzymes, protein farnesyl transferase, human immunodefi-
ciency virus (HIV) protease, and HIV reverse transcriptase.
Recently, Kurogi and Guner have used Catalyst®/HipHop
generated pharmacophores in searching 3D databases to
identify novel mesangial cell proliferation inhibitors [40].
These studies suggest that the Catalyst- generated pharma-
cophores can be effectively used for rational drug design.

We in our previous paper have developed pharmaco-
phore hypotheses [45] for six structurally diverse series of
cholecystokinin - B/Gastrin receptor antagonists. The most
predictive model consisted of four features, namely, two
hydrogen bond donors, one hydrophobic aliphatic and one
hydrophobic aromatic feature. The pharmacophore could
predict and discriminate the activities of all the compounds
and even could explain the difference in activities of those
highly active which were active in subnanomolar range
over the others.

Palomer et al. identified three feature pharmacophore
model from the 3D structure of four diarylheterocycles with
knowledge of X-ray crystal structure of SC-558: two
aromatic rings and a sulphonyl moiety [46, 47]. From the
superposition of indomethacin, a non-selective inhibitor to
this pharmacophore, it was observed that despite the
absence of the sulphonyl group, this inhibitor reasonably
maps the model. Using the mapping of the new compounds
on to the three feature pharmacophoric model, analogues of
indomethacin with sulphonyl group were developed.

Michaux et al. used Catalyst/HipHop software in order to
identify new potential lead compounds by generating
pharmacophore model of 16 diverse and highly COX-2
selective inhibitors [4]. They developed a four point
pharmacophore for COX-2 selective inhibitors using a
training set of 16 compounds, using catalyast/HipHop
module. The best hypothesis (h1) consisted of one Hydrogen
bond acceptor, two hydrophobic groups and one aromatic
ring. The pharmacophore was combined with exclusion
volume spheres representing important residues of the
COX-2 binding site and was used to virtually screen the
Maybridge database. The resultant hit compounds were
assayed for pharmacological activity against COX activity to
provide initial lead compounds. The authors used four
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classes of compounds viz., the diaryl hetrocycles, the
sulphonamide derivatives, the analogues of flurbiprofen and
the analogues of indomethacin. The pharmacophore was
different from other generated three point [48–50] or have a
second H-bond acceptor as in the hypothesis h5 [51–54].

We summarize in this paper, the development of
pharmacophores of a dataset of inhibitors for COX-2 by
using the Catalyst/ HypoGen module using six chemically
diverse series of compounds. The training set includes
compounds from viz., 1,2 diarylimadazole class, 1,5 diary-
lpyrazole class, acyclic 2-alkyl-1,2 diaryl (E) olefins, Aryl-
substituted methyleneaminoxymethyl (MAOM), analogues
of Diarylcyclopentenyl COX-2 inhibitors, 4’′-(4-Cycloalkyl/
aryl-oxazol-5yl)benzene sulphonamides, heteroaromatic
analogues of (2-aryl-1-cyclopentenyl-1-alkylidene)-
(arylmethyloxy) amine. There is, so far, no report on de-
veloping pharmacophore for COX-2 selective inhibitors
using Catalyst/Hypogen module from all these different
classes of compounds. This study is expected to provide
useful knowledge for developing new drugs targeted to
Cyclooxygenase-2.

Materials and methods

Molecular Modeling All molecular modeling works were
performed on a Silicon Graphics Octane 2 computer
running Irix 64 6.5, 600 MHz (SGI, 1600 Amphitheatre
Parkway, Mountain View, CA 94043). Catalyst 4.11
software [30] was used to generate pharmacophore models.

Selection of the training set The most important aspect of
the hypothesis generation in HypoGen is the selection of
the training set of molecules. The selection has to follow
some basic requirements; such as a minimum of 16
structurally diverse compounds should be selected to avoid
any chance correlation [40]. The activity data should have a
range of 4–5 orders of magnitude. The selected compounds
should provide clear and concise information. Any redun-
dancy should be avoided in terms of structural features or
activity range. A compound that is considered to be inactive
because of steric factors should not be included because
current Catalyst features in the Catalyst software cannot
handle such cases.

Biological data The sources of the biological activity data,
represented as IC50 in nM (compounds 1–46), were from
the literature [55–68], and the chemical structures of the
inhibitors are listed in Chart 1 and 2. The data sets were
divided into a training set and a test set. The most active
compounds were included so that they would provide
critical information for pharmacophore requirements. Sev-
eral moderately active and inactive compounds were also

included to spread the activity ranges as wide as possible.
The important aspect of this selection scheme is that each
active compound should teach something new to the
HypoGen module to help it uncover as much critical
information as possible for predicting biological activity.
In the case of COX-2 selective inhibitors, a training set of
24 compounds with the above criteria has been selected; the
other 22 compounds were used as the test set. An
uncertainty value of 3 (default) was used for compound
activity, which is a ratio range of uncertainty in the activity
value. The activities against COX-2 have been classified as
follows: highly active (<50 nM), moderately active (50–
2500 nM), and poorly active (>2500 nM). These activities
are classified, somewhat arbitrarily, on the basis of the
lowest and the highest activity ranges predicted (fit values)
by the hypothesis for selected training set molecules.

Generation of Pharmacophores Details of the pharmaco-
phore development procedures have been described in the
literature [24, 69]. In brief, conformational models of all
training set molecules for COX-2 were generated using the
best quality conformational search option in Catalyst v4.11
(Accelrys) using a constraint of a 20 kcal mol−1 energy
threshold above the global energy minimum and a modified
version of the CHARMm force field parameters [46] as
available in Catalyst. A maximum of 250 conformations
were generated using the best-fit method to ensure
maximum coverage in the conformational space. All other
settings were kept as a default. Instead of using just the
lowest energy conformation of each compound, all confor-
mational models for molecules in each training set were
used in Catalyst for pharmacophore hypothesis generation.
An initial analysis revealed that four chemical feature types
such as hydrogen bond acceptor (HBA), hydrogen bond
donor (HBD), and hydrophobic (aliphatic) (HY-ALI) and
ring aromatic (RA) features could effectively map all
critical chemical features of all molecules in the training
and test sets. The minimum and maximum counts for HBA,
HBD, HY-ALI and RA were set to 0 and 3, respectively.
These four feature types were used to generate 10
pharmacophores from the training set. The uncertainty
value was defaulted to 3, and MinPoints and MinSubset-
Points were 4 (default value). The MinPoints parameter
controls the minimum number of location constraints
required for any hypothesis. The MinSubsetPoint parameter
defines the number of chemical features that a hypothesis
must match in all the compounds set. The Catalyst software
can generate pharmacophore hypotheses consisting of a
maximum of five features.

Important output parameters that determine the quality of
the pharmacophore hypothesis 1. The cost function
analysis. The algorithm employed for the Catalyst auto-
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matic hypothesis generation (HypoGen) optimizes hypo-
theses that are common to the active compounds in the
training set but not shared by the inactive compounds. This
is done in three phases. In the constructive phase, hypo-
theses common to all actives are defined. The subtractive
phase removes hypotheses common to the inactive com-
pounds. The third phase optimizes the resultant hypotheses
from phase 2 that have survived the subtractive phase.

Catalyst uses bits for language and assigns costs to
hypotheses in terms of number of bits required to describe

them fully. The HypoGen module in Catalyst performs two
important theoretical cost calculations (represented in bit
units) that determine the success of any pharmacophore
hypothesis. One is known as the fixed cost, which
represents the simplest model that fits all data perfectly
(all compounds fall along a line of slope 1), and is
calculated by adding the minimum achievable error and
weight cost and the constant configuration cost. The second
one is known as null cost, which represents the highest cost
of a pharmacophore with no features and which estimates
activity to be the average of the activity data of the training
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set molecules. Its absolute value is equal to the maximum
occurring error cost. A meaningful pharmacophore hypo-
thesis may result when the difference between these two
values (null cost - fixed cost) is large; a value of 70–100
bits suggests an excellent chance (>90%) for a true
correlation; if the difference is between 40 and 70 bits for
a pharmacophore hypothesis, it may indicate that it has a
75–90% probability of correlating the data (Catalyst 4.11
documentation). The total cost of any pharmacophore
hypothesis should be close to the fixed cost to provide
any useful models. The total cost value is the sum of three

costs: a weight, an error, and a configuration cost value.
These three cost components could be described as follows:
Each feature of a hypothesis represents certain orders of
magnitude of the compounds activity. With the default
setting of 0.302, the represented orders of magnitude are
kept as close to 2 as possible. The weight component is a
value that increases in a Gaussian form as these function
weights in a model deviate from the ideal value of 2. The
error cost is dependent on the root mean- square (rms)
differences between the estimated and actual activities of
the training set molecules. The rms deviations represent the
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quality of the correlation between the estimated and actual
activity data. The configuration cost is also known as the
entropy cost and depends on the complexity of the pharma-
cophore hypothesis space. Mathematically, the configuration
cost is expressed as log2 P, where P is the number of initial
hypothesis created in the constructive phase and that
survived in the subtractive phase. It should not be greater
than 17 (corresponds to a number of 217 pharmacophore
models). Higher values would lead, more likely, to a chance
correlation of the generated hypothesis, since Catalyst cannot
consider more than 217 models in the optimization phase,
and so, the rest is left out of the process. Any number greater
than 17 suggests that some attention has to be given in
selecting the training set molecules. Limiting the minimum
and maximum features can reduce the entropy cost.

2. Fisher’s cross-validation test. To evaluate the
statistical relevance of the model, the Fischer’s randomiza-
tion test was applied. The Fisher’s randomization test is
used to validate the strong correlation between chemical
structures and biological activity. The purpose of this
technique is to randomize the activity data associated with
the training set compounds, and the randomized training
sets are used to generate pharmacophore hypotheses using
the same features and parameters to develop the original
pharmacophore hypothesis. If the randomized data set
results in the generation of a pharmacophore with similar
or better cost values, rms, and correlation, the original
hypothesis is considered to have been generated by chance
[70]. The statistical significance is given by the equation
significance ¼ 1� 1þ xð Þ y= �100½ , where x = total number
of hypotheses having a total cost lower than a best
significant hypothesis and y = the number of initial
HypoGen runs+ random runs. With the aid of the Cat
Scramble program available in Catalyst/HypoGen module,
the experimental activities in the training set were scrambled
randomly, and the resulting training set was used for a
HypoGen run. Thereby, all parameters were adopted from the

initial HypoGen calculation. The number of such random
trials depends on what level of statistical significance is to be
achieved. For a 95% confidence level, 19 spreadsheets were
created. For 98% and 99% confidence levels, 49 and 99
spreadsheets, respectively, are created. This procedure was
reiterated 19 times to achieve a 95% confidence level.

Result and discussion

Pharmacophore generation A pharmacophore model has
been generated using a set of 24 training set compounds
representing six series of structurally diverse compounds
existing in the literature. Sets of 10 hypotheses were
generated using the data from 24 training set compounds.
Different cost values, correlation coefficients (r), rms
deviations, and pharmacophore features are listed in Table 1.

The value of the total cost of each hypothesis was close
to the fixed cost values, which is expected for good
hypotheses. The entropy (configuration cost) value of the
hypotheses was 16.79, within the allowed range. The
difference between the null hypothesis and the fixed cost
and between the null hypothesis and the total cost of the
best hypothesis (hypothesis 1) was 88.37 and 78.51,
respectively. All 10 hypotheses consist of four features:
one HBD feature, one HBA, one HY-AR feature and one
RA feature. The best pharmacophore (hypothesis 1), which
has the highest cost difference, lowest error cost, lowest
rms difference, and the best correlation coefficient, has one
HBD, one HBA feature, one RA feature and one HY-AR
feature. A regression of the predicted activities for the
training set by the best hypothesis versus the actual
activities results in the same relationship for those predicted
by hypothesis 1. The graph of estimated activities against
actual activities for the training set is shown in Fig. 1. The
best hypothesis is different from the pharmacophore
described by Michaux et al. [4]. The pharmacophore

Table 1 Results obtained from pharmacophore hypothesis generation using the training set molecules

Hypothesis number Total cost Error cost RMS Correlation (r) Featuresb

1. 108.509 90.3154 0.894 0.954 HBA, HBD, HY-AR, RA
2 108.982 90.9657 0.924 0.950 HBA, HBD, HY
3 109.959 91.8718 0.964 0.946 HBA, HBD, HY
4 110.441 92.414 0.987 0.943 HBA, HBD, HY
5 110.709 92.497 0.990 0.943 HBA, HBD, HY
6 110.756 92.614 0.995 0.942 HBA, HBD, HY
7 110.994 92.974 1.010 0.940 HBA, HBD, HY
8 112.04 94.1003 1.055 0.935 HBA, HBD, HY
9 112.23 94.225 1.060 0.934 HBA, HBD, HY
10 112.612 80.7265 1.062 0.934 HBA, HBD, HY

aNull cost=187.021, Fixed cost=98.6513, Configuration cost=16.79. All costs are in units of bits. b HBA, hydrogen bond acceptor; HBD,
hydrogen bond donor; HY-AR, hydrophobic aromatic; RA, ring aromatic
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developed by Michaux et al. hypothesis h1 showed one
HBA, One RA, and two hydrophobic (HY) features are
important for the activity. The HBA feature was shown to
be mapped by the S = O of the sulphonamide moiety. In
another pharmacophore, h5 they showed two HBA features,
one RA and one hydrophobic features, which could not
explain the SAR of the diaryl heterocyclic class of
compounds. The pharmacophore h1 could correlate the
SAR for the different inhibitors and fitted the COX-2
selective site. We selected to generate hypothesis including
more classes of compounds and searched for which of the
features would be essential in all the classes of compounds.
Our resultant hypothesis Hypo 1 (Fig. 2a) gave one HBD
feature, one HBA, one HY-AR feature and one RA feature
as essential features. The HBD feature in our hypothesis is
also essential, to which NH of the sulphonamide maps in
compounds containing the sulphonamide functionality. This
feature is shown to interact with the Leu352 (C = O...H-N),
Gln192 (C = O...H-N) and Ser353 (C = O...H-N) in the
COX-2 binding site with SC558 (Fig. 3). In order to search
for a pharmacophore comprising of one additional HBA
feature in the form of S = O, we reduced the spacing
parameter from 297 Å to 5 Å as advance parameter
modification but the Hypogen output selected HBD feature

Fig. 1 The regression of actual versus predicted activities by
hypothesis 1 for the training set inhibitors. The training set includes
24 structurally diverse COX-2 inhibitors

Fig. 2 Mapping of the five chemotypes of COX-2 inhibitors from
training set onto the selected pharmacophore (hypothesis 1) (a)
pharmacophore (hypothesis 1) (b) compound 1, celecoxib derivative
(c) compound 3, diarylpyrazole derivative (d) compound 7, isooxazole
derivative (e) compound 11, indole derivative (f) compound 12, diaryl
olefin derivative (g) compound 18, cyclopentene derivative (h)

compound 20, diarylimidazole derivative. The cyan contour represents
hydrophobic aromatic (HY-AR), green contour represents hydrogen
bond acceptor (HBA), purple contour represents the hydrogen bond
donor (HBD) and orange contour represents the ring aromatic (RA)
features, respectively

J Mol Model (2008) 14:1087–1099 1093



of NH to be important over HBA feature to explain the
activities of all the classes of compounds. This could be
explained as probably the Catalyst does not seem to support
two closely placed features such as those present in SO2NH2

group. Either the generated hypothesis has one HBA
mapping to S = O as in the case of h1 and h5 generated
by Michaux et al. or one HBD mapping to NH of the
sulphonamide (HYPO 1 in our case). The software could not

detect simultaneous presence of closely placed features one
HBA and one HBD on same functional group (SO2 NH2).

Table 2 shows the actual and estimated inhibitory
activities for training set molecules for COX-2 inhibitors.
In the training set compounds, all highly active compounds
(<50 nM) were predicted correctly as highly active. Among
moderately active compounds all were predicted rightly
except one compound 12 (50–2500 nM), which was
predicted to be poorly active. Another compound 18 a
poorly active one (>2500 nM) was predicted to be
moderately active.

Validation of pharmacophore model 1. Fisher’s cross
validation test. A pharmacophore generated by the Cat
Scramble software in Catalyst was assessed for quality by
Fisher’s randomization test method. The purpose of this
technique is to reshuffle the activity data associated with
the training set compounds and the randomized training sets
are then used to generate pharmacophore hypotheses using
the same features and parameters as had been used to
develop the original pharmacophore hypothesis. If the
randomized data result in the generation of pharmacophore
with similar or better cost values, RMS’s, or correlations,

Fig. 3 SC558 (in bold stick) in the COX-2 binding site is shown to
interact with Glu192, Ser353, Arg120 (prepared from PDB ID 6COX)

Table 2 Actual and predicted activities of training set molecules calculated on the basis of hypothesis 1

Number Comp. number Fit IC50(nM)a Activity scaleb

Actual Estimated Actual Estimated

1 1 8.41 1.7 5.6 + + + + + +
2 2 8.39 3.7 5.9 + + + + + +
3 3 8.30 6 7.2 + + + + + +
4 4 8.25 8 8.2 + + + + + +
5 5 8.39 12 5.9 + + + + + +
6 6 7.97 20 16 + + + + + +
7 7 8.22 26 8.6 + + + + + +
8 8 6.43 85 530 + + + +
9 9 5.91 1900 1800 + + + +
10 10 6.54 510 420 + + + +
11 11 6.21 650 890 + + + +
12 12 5.51 770 4500 + + +
13 13 6.37 1500 610 + + + +
14 14 6.19 1700 930 + + + +
15 15 5.24 2600 8400 + +
16 16 5.11 3100 11000 + +
17 17 5.34 7900 6500 + +
18 18 5.79 8000 2300 + + +
19 19 5.25 10000 8100 + +
20 20 5.14 12000 10000 + +
21 21 5.06 31000 13000 + +
22 22 4.72 43000 28000 + +
23 23 5.25 68000 8100 + +
24 24 4.51 70000 45000 + +

a Data for activities of Cyclooxygenase inhibition are from references listed in Materials and methods section.
b Activity scale: + + + (0–50 nM, highly active), + + (50–2500 nM, moderately active), + (>2500 nM, inactives)

1094 J Mol Model (2008) 14:1087–1099



the original hypothesis is considered as having been
generated by chance. The results of such a run are shown
in Fig. 4, and the resultant data clearly shows that none of
the generated hypothesis after reshuffling had a cost value
lower than that of hypothesis 1. However, it is clearly

depicted from the graph shown in Fig. 4 that among the 19
trials conducted for the randomization of activity data only
one randomization trial 7 gave the results having the total
cost 130.44 for hypothesis 1 which is close to the total cost
108.50 of hypothesis 1 for the unscrambled data. According
to this software documentation and the literature available,
this result indicates that there is a 95% chance for hypo1 to
represent the correlation in the training set.

2. Using the test set. Apart from predicting the activity
of the training set compounds accurately, one of the major
objectives of pharmacophore hypothesis generation is to
verify whether pharmacophore models are capable of
predicting the activities of test series and classifying them
correctly as actives or inactives. We have constructed a
test set which consists of 22 compounds and conforma-
tional studies for each compound were done as described
earlier. The estimated activities were scored using hypo-
thesis 1 as the pharmacophore (Table 3). All highly active
compounds (<50 nM) were predicted to be highly active
except compound 27, which was inaccurately predicted as
moderately active. Among the moderately active compounds
(50–2500 nM) all were correctly predicted as moderately
active except three compounds. One moderately active
compound 38 was predicted to be highly active whereas

Fig. 4 Fisher’s cross validation run using CatScramblea

Table 3 Actual and estimated activities of test set molecules calculated on basis of hypothesis 1

Number Comp.
number

Fit IC50 (nM)a Activity scaleb

Actual Estimated Actual Estimated

1 25 8.399 3.7 5.8 + + + + + +
2 26 8.432 4.7 5.3 + + + + + +
3 27 6.634 7.0 340 + + + + +
4 28 8.454 13 5.1 + + + + + +
5 29 8.487 15 4.7 + + + + + +
6 30 8.421 40 5.5 + + + + + +
7 31 8.563 41 4.0 + + + + + +
8 32 8.522 15 4.3 + + + + + +
9 33 5.995 120 1500 + + + +
10 34 5.93 130 1700 + + + +
11 35 5.792 1690 2300 + + + +
12 36 6.635 400 330 + + + +
13 37 6.265 1700 780 + + + +
14 38 7.599 1700 36 + + + + +
15 39 5.623 370 5600 + + +
16 40 3.979 900 9400 + + +
17 41 5.987 10000 1500 + + +
18 42 5.890 20700 1900 + + +
19 43 6.3639 4790 720 + + +
20 44 4.897 20% at 10 μM 4400 + +
21 45 4.398 >100 μM 8700 + +
22 46 4.855 934000 4000 + +

a Data for activities of cyclooxygenase inhibition are from references listed in Materials and methods section.
b Activity scale: + + + (0–50 nM, highly active), + + (50–2500 nM, moderately active), + (>2500 nM, inactives)
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compound 39 and 40 were predicted to be inactive. All
inactive compounds were predicted as inactive ones except
the compound 41–43, which were predicted to be moder-
ately active.

Finally the compounds were mapped onto the best
hypothesis using the best fit and a conformational energy
constraint of 10 kcalmol−1 One of the most active as well as
most selective COX-2 inhibitors among all compounds tested
in all the series (compound 1) was selected from the training
set to show mapping of this compound on the selected
pharmacophore (hypothesis 1, Fig. 2a and b). The pharma-
cophore predicted the inhibitory activity of this compound
against COX-2 excellently. Compound 1 mapped all four
features of the hypothesis quite well with a fit value of 8.41
(actual activity 1.7 nM and estimated 5.6 nM). Similarly,
compounds 2–7 also mapped all four features well with a fit
value range from 8.39–7.97 (figure not shown). Only highly
active compounds mapped all the four features in the training
set. Out of 24 compounds moderately active compounds, e.g.,
11 and 12 missed either HBD (compound 11, Fig. 2e) or
HBA (compound 12, Fig. 2f) one feature or partially
overlapped either of them. The poorly active compounds
missed two of the features. Among poorly active compounds,

18 misses HBD completely and partially overlaps with HBA;
compound 20 misses HBA and HBD completely. All the 24
compounds mapped RA and HY-AR feature. As all the
highly active compounds with fit value 8.41 –7.97 mapped
four features, this suggested that presence of four features one
HBD, one HBA, one RA and one HY-AR are minimum
essential for the highly active compounds and three feature
hypothesis missing either HBA or HBD is sufficient to
account for the moderately active compounds. Inclusion of
fourth feature as HBA /HBD results in the improvement of
potency from moderately active (50–2500 nM) to highly
active (1–50 nM). In other words, three feature hypothesis
explains the moderately active compounds in the activity
range of 50 to 2500 nM, but the four feature hypothesis
explains the improvement of activity of compound 1
(1.7 nM) over that of compound 9 (1900 nM). To show that
the other chemotypes also map well to hypothesis 1, one
compound from each type - diarylpyrazole derivative
compound 3, Fig. 2c; Isooxazole derivative compound 7,
Fig. 2d; Indole derivative compound 11, Fig. 2e; diaryl olefin
derivative compound 12, Fig. 2f, Cyclopentene derivative
compound 18, Fig. 2g and diarylimidazole derivative
compound 20, Fig. 2h were mapped to hypothesis 1. To

Fig. 5 Mapping of the five chemotypes of COX-2 inhibitors from test
set onto the selected pharmacophore (hypothesis 1) (a) compound 25,
celecoxib derivative (b) compound 30, isooxazole derivative (c)
compound 33, diarylimidazole derivative (d) compound 36 cyclo-
pentene derivative (e) compound 41, diarylimidazole derivative, (f)
compound 42, diarylimidazole derivative (g) compound 44, dihydro-

pyrolizine derivative (h) compound 45. The cyan contour represents
hydrophobic aromatic (HY-AR), green contour represents hydrogen
bond acceptor (HBA), purple contour represents the hydrogen bond
donor (HBD) and orange contour represents the ring aromatic (RA)
features, respectively
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give some indications of how well the structurally diverse
compounds from the test set mapped this pharmacophore, one
derivative from each subtype was selected and mapped on this
pharmacophore and is shown in Fig. 5. Among the test set
compounds, compound 25, (Fig. 5a) mapped the pharmaco-
phore (fit value 8.399) very well and the estimated activity
calculated on the basis of this pharmacophore was close to
the actual activity (actual activity of 3.7 nM vs estimated
value of 5.8 nM) and is shown as + + + in Table 3 (The
classification of high 0–50 nM, moderate 50–2500 nM and
weak activity >2500 nM was done arbitrarily). Moderately
active compounds were mapping to three features with
partial overlaps e.g compound 11 (fit value 6.21, Fig. 2e)
from the training set and compound 33 (fit value 5.99,
Fig. 5c) from the test set. Inactive compound mapped only
two features, e.g., compound 41, Fig. 5f. The inactive

compound either missed both HBD and HBA features, or
missed one of them with partial overlap of other feature.

The validation study with five different classes of COX-
2 inhibitors suggested that pharmacophore was capable of
mapping structurally diverse group of compounds quite
effectively and provided confidence that this pharmaco-
phore could be used as a search query to identify new
COX-2 inhibitors from drug like chemical libraries.

Validation of the pharmacophore model using cyclooxyge-
nase-1 selective inhibitors as a test set (test for selectivity)
A set of seven compounds [64–68] (Chart 3) that target
COX-1 selectively were taken as a negative controls to
check the selectivity of the hypothesis for COX-2 targeted
compounds versus COX-1 compounds. In fact the most
selective COX-1 ligands were predicted as poorly active
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Chart 3 Chemical structures of 7 test set compounds with COX-1 selectivitya

Table 4 Actual and estimated activities of test set molecules (COX-1 selective inhibitors) calculated on basis of hypothesis 1

Number Comp
number

Fit Actual activity (COX-1)
nM

Actual activity (COX-2)
nM

Estimated activity (COX-2)
nM

predicted activity
scale

1 47 5.37 680 >100 μM 6100 +
2 48 5.14 1170 >100 μM 10000 +
3 49 6.63 43% at10 μM 1800 3400 +
4 50 6.631 33% at10 μM Not active 3400 +
5 51 6.23 95±15 230±120 830 + +
6 52 6.11 100000 >100 μM 1100 + +
7 53 5.66 100000 >100 μM 3100 +
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using pharmacophore mapping, thereby showing some
degree of selectivity of generated hypothesis. Hypothesis
1 predicted the activities of five out of seven tested
activities to be inactive against COX-2, thereby showing
the selectivity of the hypothesis to some extent. Compound
51 and 52 were predicted to be moderately active against
the COX-2. This suggests that there are similarities for
feature requirements of the two kinds of isoforms, i.e.,
COX-1 and COX-2 binding sites, and hypothesis1gener-
ated in this work, though predictive for the COX enzyme
may not be fully selective for the COX-2. The results of the
activity prediction of these compounds are shown in
Table 4.

Conclusions

The work presented in this study shows how chemical
features of a set of compounds along with their activities
ranging over several orders of magnitudes can be used to
generate pharmacophore hypothesis that can successfully
predict activity. The models were not only predictive within
the same series of compounds but six different classes of
diverse compounds also effectively mapped onto most of the
features important for activity. The pharmacophores generated
from COX-2 inhibitors can be used (1) as a three dimensional
query in database searches to identify compounds with
diverse structures that can potentially inhibit COX-2 enzyme
selectively and (2) to evaluate how well any newly designed
compounds maps on the pharmacophore before undertaking
any further study including synthesis. Both these applications
may help in identifying or designing compounds for further
biological evaluation and optimization. The pharmacophore
developed in this study using inhibitors for COX-2 showed
distinct chemical features that may be responsible for the
activity of the inhibitors. We intend to utilize the information
to undertake 3D searches on large databases of drug like
molecules to identify a new generation of COX-2 inhibitors.
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